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According to the kinetic theory, the thermal conductivity of a gas should 

increase with the temperature. Although this prediction is generally con¬ 

firmed by experiment, it is impossible to deduce from the existing experi¬ 

mental data any more specific conclusions. According to Loeb (Kinetic 

Theory of Gases, p. 251) “ the results of the many experiments are none 

the less quite discordant and little can lie deduced from them.” On the 

other hand, the absolute values at 0°C. of the conductivities of some of the 

commoner gases are known with reasonable accuracy, and so it can be 

concluded that experimental procedures which lead to tolerably accurate 

values of the conductivity at 0°C. are either inapplicable or unsuited to 

investigations carried out at other temperatures. In the present paper an 

account will be given of some preliminary experiments undertaken to 

investigate the temperature variation of the conductivity of carbon dioxide 

gas. The method used is one that was developed twelve years ago, and was 

applied successfully to determine the conductivity of a number of gases at 

0°C.(1h In those experiments a hot wire method was used in which the 

wire was relatively short and thick, instead of long and fine as in the older 

traditional forms of the hot wire method. It would seem that the short 

thick wire offers greater prospects of success in a rather difficult field of 

investigation. 

A short account of the two types of hot wire experiment will first be 

given. In all hot wire experiments a metal wire, which is heated by passing 

an electric current through it, is mounted axially in a glass or metal tube 

which contains the gas under investigation and which is immersed in a 

constant temperature bath. The wire serves both as a resistance thermometer 

and as a heater of the gas in the tube. The average rise in temperature of 

the wire on passing a given current through it will depend on the con¬ 

ductivity of the gas surrounding the wire. The hot wire method depends on 

this fact, but carries with it the obligation of completely eliminating convec¬ 

tion currents in the gas. This problem was studied experimentally by 

Sophus Weber(2) and it is now possible to design and set up an apparatus 

in such a way that convection currents are completely absent. Three condi¬ 

tions which must be satisfied are (1) that the tube be mounted vertically, 

(2) that it is not too wide, and (3) that the temperature difference between 

the wire and the tube be kept small. 

A difficulty which is met with to a greater or less extent in all hot wire 

experiments has its origin in the existence of a discontinuity of temperature 

at any solid-gas interface. The steeper the temperature gradient near the 

surface, the greater the temperature discontinuity or drop. The prevalent 

use of fine wires greatly aggravates the difficulty, the temperature gradient 

at the surface being much steeper for thin than for thick wires. The 

magnitude of the temperature drop increases with the mean free path of the 

molecules, i.e., with decreasing pressure of the gas. By making use of this 

fact it is possible to correct a set of values of the conductivity obtained at 

different pressures for the effect of the temperature drop. 
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The different kinds of hot wire apparatus being always symmetrically 

constructed, the distribution of the temperature along the wire is also 

symmetrical with respect to the two ends of the wire. When the wire is 

sufficiently long and fine the graph of the temperature along the wire is 

shaped very like a top hat, i.e., there is a central portion of the wire along 

which the temperature is constant. The length of this portion is relatively 

greater the longer the wire is and the smaller its diameter. As there is no 

temperature gradient anywhere in this part of the wire all the Joule heat 

developed in it by the electric current must be carried away laterally from 

the surface of the wire by conduction through the gas and by radiation 

(assuming, of course, convection is absent). If the wire is uniform and 

has a truly circular cross-section and if it be mounted along the axis of a 

truly cylindrical tube the flow of heat by conduction through the gas from 

the portion of wire at constant temperature is radial and takes place between 

concentric cylindrical surfaces defined by the wire surface and the inner 

surface of the tube. If this particular portion of the wire can be isolated 

so that the measurements are made with respect to it ahd not the whole 

wire, the theory of the experiment takes on a very simple character. 

The isolation can be effected in either of two ways. In one of these 

due to Schleiermacher (1888)(3> the central portion is tapped by intro¬ 

ducing two potential leads of very fine wire through the wall of the tube 

and attaching them to the wire at appropriate points. In the other, devised 

by Goldschmidt (1911)(4) two tubes are employed which are identical in 

all respects except that one is short and the other long. The wire in the 

shorter tube plays a similar role to that of the compensating leads of the 

platinum thermometer. The difference in the electrical resistance of the 

long and short tube will give the resistance of the central portion of the 

wire from which the flow of heat is radial. 

Let h be called the external conductivity, defined as the loss .of heat 

per second from unit area of the wire surface per degree difference of 

temperature between the wire and the tube. Then, if 1 be the length of 

the central portion and b the radius of the wire, the rate at which heat is 

lost from the surface is: 

27rblh (tx — t2) 

where tt is the temperature of the wire obtained indirectly from resistance 

measurements, and t2 is that of the tube. The rate at which Joule heat is 

developed in the part of the wire under consideration is RI2/J, where R ohm 

is its resistance when the current is I ampere. Since no heat is conducted 

along the wire it follows that: 

27rblh (tL — t2) — RI2/J (1) 

where J = 4* 18 joule/cal. 

All the quantities in this equation are either known or can be measured, 

except h, which can therefore be determined. If the loss of heat from the 

wire by radiation is inappreciable compared with the loss by conduction the 

thermal conductivity k of the gas can be obtained by multiplying h by a 

certain k‘ form factor ”, the value of which is determined by the fact that 

the flow of heat is radial and takes place between concenltric cylindrical 

surfaces. The appropriate form factor can be shown to be b loge a/b, a 

being the inner radius of the tube, and b the radius of the wire. Accordingly 

we write : k = h.b loge a/b (2) 
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The type of hot wire experiment just described has a number of 

unfavourable features. Whichever of the two methods is used for isolating 

the constant temperature part of the wire, an inconveniently long apparatus 

results. For this reason such an apparatus is unsuitable when measurements 

of the conductivity over a range of temperature are required. The diameters 

of the hot wires used are quite small (usually a few thousandths of an inch 

only) and cannot be determined as accurately as those of thick wires. In 

some investigations merely an average diameter of the wire is obtained by 

weighing in air and in water a known long length of the wire used. As the 

temperature gradient at the surface of such fine wires is very great, the 

wire should be uniform and accurately circular in section. These are 

requirements which can be verified only by contact measurements. 

The above type of hot wire experiment was devised before modern high 

vacuum technique was developed. The use of the short thick hot wire is 

made to depend upon the fact that, when a sufficiently high vacuum is 

produced in the tube, all the Joule heat generated by the electric current is 

conducted out of the ends of the wire and none is lost laterally, except a 

very small amount by radiation which can be allowed for by calculation. 

Thus an experiment performed when the tube is highly evacuated leads to 

a determination of the thermal conductivity of the wire itself. It is clear 

that in this kind of hot wire experiment, when the tube contains a gas, some 

heat is conducted along the wire and some is also lost laterally. The theory 

is necessarily less simple, but the gains on the experimental side are so great 

as to more than compensate for its use. 

The following simplified account of the theory is sufficient to illustrate 

the principles of the method. For calculating the conductivity it is, however, 

necessary to use the more accurate theory given in the Appendix to this 

paper. 

For a short thick wire of radius b mounted axially in a tube maintained 

(say) at 0°C. the distribution of temperature along the wire can be shown 

to be very nearly parabolic. Accordingly, if the centre of the wire (length 

21) be taken as origin, the temperature at any point on it distant x from 

the centre will be given by : ^ = c (l2_x2) (3) 

c being a constant (see fig. 1). 

Fig. 1. 
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Clearly the temperature has a maximum value of cl2 at the middle and 

it is zero at both ends. 

The mean temperature of the wire can easily be shown to be: t = 2cl2/3. 

k /: 
c(l2 — x2) dx = 2cl2/3 ) 

The temperature gradient at any point in the wire is, by (3) : 

dt 

dx 
-2cx 

At either end the gradient is therefore: 

Wx=+1 
2cl = 

3t 

T 

The rate at which heat is conducted out of the wire at the two ends is: 

6A7rb2 t 

i 

\ being the thermal conductivity of the wire, and A = 77-b2 its cross-section. 

The rate at which heat is lost from the surface of the wire is: 

2 77 b . 21 . t . h = 4 77 b 1 h t 

where h is the external conductivity. 

The rate at which heat is generated in the wire by the electric current 

is RI2/J where R is the resistance of the wire when the current is I ampere. 

The sum of the heat lost per second by internal conduction and by external 

conduction must equal the joule heat produced per second by the current. 

Accordingly we have: 

RF 

J 

6 A 77 b2- , 4 - 

-t— t + 4 77 1 b h t (4) 

If a be the temperature coefficient of the resistance, then for a small rise 

of temperature: 

R-R0(l+at) 

where R0 is the resistance of the wire at 0°C. Solving for t we obtain: 

t = 
R R0 

R°a 

and substitution of this value of t in (4) gives: 

6 A 77b2 (R-Rq) + 4 77 bill (R-R0) 

R0 a 1 R, 

RP 

J 

R0 R I2 a 
or 

4(R - R0) 77 b2 J1 

3A 

212 
(5) 
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For the special case in which there is a high vacuum in the tube we may 

put h = 0 in (5) and so obtain Knudsen’s formula: 

1 K E0 I2 a 1 

6 J 77 b2(R—R0) 
(6) 

Knudsen proved that it was possible to measure the thermal conductivity 

of a metal accurately by means of (6), using a platinum wire a couple of 

centimetres in length and a few tenths of a millimetre in diameter. The 

conductivity of the wire having been determined by (6), the value of A is 

next introduced into (5), which equation may then be solved for h and 

the conductivity of the gas is obtained, as in the other method, through (2). 

The form factor b loge a/b is an approximation as the flow of heat by 

conduction through the gas is not strictly radial. The error introduced into 

k by its use can be proved to be less than 1 per cent. It follows that the 

accuracy with which the conductivity of a gas can be obtained by this method 

depends upon the accuracy with which the conductivity of the wire is 

obtained. It will be noticed that if the current is kept constant the only 

quantity which has different values in (5) and (6) is (R-R0), and that 

for a given current (R-r0) necessarily has its maximum value in (6), 

i.e., under high vacuum conditions, and here optimum accuracy in its 

measurement is most desirable. 

The method described has, in the earlier work(1), been submitted 

to searching tests, by varying all the factors upon which the conductivity 

of a gas depends. Wires and tubes of different materials and dimensions 

have been tried. Both platinum and copper wires were employed, and 

although the thermal conductivity of copper is six times that of platinum, 

practically identical values of the conductivity of air, as also of hydrogen 

gas, were obtained. 

Description of the Apparatus 

In order to investigate the conductivity at fixed temperatures other than 

the ice point, a small and compact conductivity apparatus is essential if 

accurate temperature control is to be achieved. One form of the apparatus 

used in the earlier work at the ice point was judged suitable for measurements 

of the conductivity at the steam point (100°C.), the ice point (0°C.), the 

carbon-dioxide point (— 78'50°C.), and the oxygen point (—183°C.). 

This apparatus consisted of a platinum wire 1*5 mm. in diameter mounted 

in a stainless steel tube 10 cm. long, and having an internal diameter of 

12 mm. Some preliminary tests made with this apparatus (which had been 

out of use for twelve years) indicated that some deterioration in the soft 

solder used in fixing the wire in the tube had occurred. It was therefore 

decided to dismantle the apparatus and re-assemble it using silver solder 

wherever soldering was necessary. The inner surface of the tube was 

re-lapped and a new copper-glass seal was made. The platinum wire was 

re-drawn using diamond dies and then carefully annealed at 950° in a 

muffle furnace. A recently-calibrated set of slip gauges was used in con¬ 

junction with micrometer screw gauges and a pair of internal jaws to 

determine the dimensions of the tube and wire, and the tube was then re¬ 

assembled. Fig. 2 is a sketch of the completed apparatus. The wire is 

insulated electrically from the steel tube by means of a double glass copper 

join G in the lower copper end-cap C. The tube is closed at either end by 
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a thin copper end-cap, about 1 mm. thick, through the centre of which the 

wire is soldered. The side tube T is sealed to a wider glass tube leading 

off to a vacuum pump, a simple U-tube mercury manometer, a discharge 

tube, and a tap through which gas may be introduced. The current and 

potential leads immediately above the tube were wrapped in cotton wool to 

protect them from draughts, which, particularly in steam point determina¬ 

tions, had produced fluctuations in current and poten¬ 
tial readings. 

In order to measure the thermal conductivity of a 
gas, the apparatus is pumped out through one tap and 
the pure gas is then introduced through another until 
its pressure in the apparatuus is approximately atmos¬ 
pheric pressure. The gas is later pumped off a little 
at a time in order to enable readings at various pres¬ 
sures to be taken. 

When a determination of the thermal conductivity 
A of the wire is to be made, the mercury manometer 
is removed and a tube containing activated charcoal 
is substituted for it. The high vacuum required is 
obtained in the usual way by immersing the charcoal 
tube in liquid air after degassing the charcoal. 

Dimensions of Tube and Wire at 0°C. 

Mean distance between the internal faces of the 
copper end-caps (i.e., effective length of the platinum 
wire) = 103*87 mm. rb *05 mm. 

Mean internal diameter of steel tube 

= 12*814 mm. zb *005 mm. 

Mean diameter of platinum wire 

= 1*438 mm. zb *003 mm. 

Measurement of Electrical Quantities. 

Apart from the dimensions of the wire and the tube, 
the other quantities required are electrical ones, viz.: 

the resistance of the wire at the temperatures of 
the constant temperature bath in which the apparatus 
is immersed; a, the temperature coefficient of the 

resistance at that temperature ; R, the measured resis¬ 
tance of the wire when it carries a steady current of 
I amperes. 

Of these, R0 and a are electrical constants which 

are both obtained indirectly from measurements of R. 

The quantities R and I are obtained directly by comparing the drop 

ot potential across the wire with the drop across a standard *01 ohm 

resistance by Tinsley. A five-dial Diesselhorst low-resistance potentiometer 
made by Wolff, is used to measure the potential drops. Although the 

circuit used is a very simple one, great care must be taken in setting it up 

m order to obtain electrical stability. The work is carried out in a room 

in which the temperature remains approximately constant near 20°C., the 

resistances of the coils of the potentiometer being correct at this temperature. 
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It is not convenient to measure R0 directly. Instead, a series of values 

of R for different values of I is obtained (whether the tube be evacuated 

or left filled with a gas is immaterial so long as the conditions inside the 

tube remain the same during these readings). Corresponding values of 

1 /R and I2 are then plotted upon a large sheet of graph paper. The points 

so obtained lie very accurately upon a straight line and the line is extra¬ 

polated to give 1/R0 corresponding to I = 0. The value of R0 actually 

adopted is obtained by calculation, rather than from the drawn graph, using 

Cauchy’s method (for which see Champion and Davy, Properties of Matter, 

p. 267). 

To obtain a, the variation of the resistance of the platinum wire with 

the temperature is determined. For platinum it is sufficient to use the two- 

constant formula: r —. _|_ at _j_ pt2) 

between — 78-50°C. and 100°C., where r = Rt/Ro0°C. or the ratio of the 

resistance at t°C. to the resistance at the ice-point, and a and b are numerical 

constants. Measurements of the resistance were made at the ice-point, the 

steam point, and the carbon dioxide point (—78-50°C.). 

The temperature coefficient a at any required temperature t is then 

given by: = (a + 2bt) Rt/R0°C. 

The following figures were obtained: 

— —78*50°C. 0°C. 100°C. 

Resistance (R0) *00437978 (R0o°c.) *00639591 •00889862 ] 

a •0059299 *0039705 •0027709 j 

a = *0039705 b = -*000000575 

The above values of a and b lead to the following value of the § coefficient used in platinum thermometry : 

8 = —104 b/(a + 100&) = 1*49 

Note on the Attainment of the C02 Point. 

In order to make measurements at the C02 point (—78*50°C.) it was 

required that the tube be kept at this constant temperature for at least two 

hours. The tube is nearly 4i inches long, and is connected by current and 

potential leads to the rest of the apparatus. When the tube is placed in the 

C02 bath, heat tends to be conducted to the tube from outside along these 

leads. Moreover, heat is generated in the wire in the tube at the rate of 

approximately *07 watt, and this must be dissipated by the bath. The 

conditions are thus more exacting than is generally the case for ordinary 

thermometric work. 

A separate investigation was required to determine how a dry-ice bath 

might be used to give satisfactory results. An examination of the literature 

showed that other workers who had attempted to use this fixed point for 
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thermometric work had experienced difficulty, and apart from a paper by 

Zeleny and Zeleny(5\ little information of any assistance to us was discovered. 

The conduction of heat to the tube along the leads was overcome by 

replacing the lead wires in the vicinity of the tube by thin wide strips of 

copper which ran parallel with the tube and traversed 5^ inches of the bath 

before being soldered to the tube. Good thermal contact between the strips 

or tube and the bath was obtained by using a wet slush of dry-ice chips and 

ethyl alcohol. 

The use of a Dewar flask, as a receptacle for the dry-ice mixture, is 

not recommended. It was not until its use was abandoned that success 

in the handling of the bath was obtained. 

The tube was placed centrally in a glass gas cylinder, 12 inches tall 

and 2\ inches in diameter, which stood on \ inch of felt on a wooden 

stand. The sides of the cylinder were lagged with two layers (about 

ljt inches uncompressed) of cotton wool, which also extended about 2 inches 

above the top of the jar. A single layer of paper was then tied around 

the lagging. The dry-ice was reduced to fine chips by means of an ice- 

grinder, and these chips were mixed with ethyl alcohol in an aluminium 

saucepan until a wet, but not sloppy, mixture was obtained. This was 

fed by spoon into the jar surrounding the tube. The mixture in the jar 

was then prodded with a long thin metal rod to ensure that it was well 

packed down, and the jar was “ topped up ” with more wet ice. Finally 

some alcohol was cooled with dry-ice and added to the jar until about \ inch 

of free alcohol remained above the surface of the dry-ice chips. 

The tube was left for at least five minutes, at the end of which time a 

gentle bubbling of gas through the surface alcohol could be observed. 

"Thereafter no stirring or prodding was permitted, although the original 

level and the \ inch depth of free alcohol were maintained by adding chilled 

alcohol or wet dry-ice as required. 

It was found that such a mixture of clry-ice and alcohol, with free 

alcohol on top, when lagged with sufficient cotton wool to reduce the 

evolution of gaseous carbon dioxide to a gentle steady rate, would maintain 

the tube at the C02 point for a period of several hours, and in general, 

would behave as satisfactorily as an ice-water bath for the 0°C point. 

It was necessary to apply a correction 1o allow for the hydrostatic 

pressure of the alcohol at the point in the bath where the temperature was 

being measured. In this experiment the hydrostatic pressure at the centre 

of the tube was calculated, and the temperature of the bath at this depth 

was taken as the mean temperature of the tube. 

Determination of A. 

To determine A the apparatus is evacuated and a high vacuum 

(< lO5 mm. of mercury) is produced by means of charcoal and liquid 

air. The values of R corresponding to a series of different values of the 

current I are obtained and the conductivity, A, is calculated using formula 

(6) in the Appendix. (The platinum wire is not sufficiently short to use 

Knudsen’s simpler formula (6) given in the elementary theory.) 
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Results. 

Temperature. — 78*50°C’. 0°C. 100°C. 

A cal. cm.-1 sec.-1 deg.-1 •1603 ± *0002 •1675 ± *0002 •1690 ± *00013 

The value of A at —78‘50°C. was confirmed hy several independent determinations. 

Determination of k. 

The conductivity A of the wire being known, the apparatus may then 

be immersed in a constant temperature bath and filled with the gas to be 

investigated. The current I is set to give a mean rise of temperature of 

the wire of 3-5 degrees. Corresponding values of R and I are then obtained 

at a series of different pressures of the gas. 

The approximate conductivity k' of the gas is found at each pressure 

of the gas by solving the equation (4) (or (5)) in the Appendix for li 

and then k' is deduced by multiplying h by the form factor b loge a/b. 

As the flow of heat is not exactly radial (4) or (5) leads( to approximate 

values k' of the conductivity, but by making use of relations (9) and (8) 

of the exact theory the amount of the correction to k' can be worked out. 

This proves to be quite small, being just under 1 % over a wide range of 

conductivities. It is sufficient to reduce the conductivity k' as calculated 

from (4) (or (5)) by 1% to obtain the value k corrected for the departure 

from radial flow. 

Effect of Temperature Discontinuity. 

On account of the temperature discontinuity at the surface 

and at the inner surface of the tube, the space factor for radial 

be replaced by: 

b [ loge a/b + y (1/a + 1/b) J 

of the wire 

flow should 

(6) 

where y is related to the temperature discontinuity A T by the equation of 

Poisson: 

AT 
dT 

7 dn ' 

Here dT/dn is the temperature gradient along the outward drawn normal 

and y is a length quantity which varies inversely with the pressure. 

It has been found that k at 0°C is, in general, constant over a wide 

range of pressures (60-10 cm. of mercury) for the monatomic and diatomic 

gases investigated by the apparatus containing the thick platinum wire(1). 

From these results it is inferred that the effects of convection and of the 

temperature discontinuity are negligibly small for the range of pressures 

quoted. 

(It should be noted that the effect of reducng the pressure of the gas 

on its apparent conductivity is to decrease this if convection is present, 

and also to decrease it on account of the temperature dscontinuity. 

Consequently, if it is found that k is strictly constant over a range ol 

pressures there can be no convection present and the effect of the temperature 

discontinuity is likewise negligible.) 
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The Thermal Conductivity of Carbon Dioxide. 

The gas was prepared by heating pure sodium bicarbonate and dried 

by passing through calcium chloride and phosphorus pentoxide. 

The following results were obtained:— 

(a) At C02 Point. Mean Temperature of Gas : —76*4°C. 

Pressure 
(Cm. of Hg.). 

Current 
(I amp.). 

R - R„ 
(Ohm). 

k' x 105 ( —76*4°C.) 
(cal. cm-1 sec-1 deg-1). 

k x 106 (— 78*50°C.) 
(cal. cm-1 sec-1 deg-1). 

77*21 3*69157 •00010037 2*226 2*172 

65*01 3*69070 10022 2*236 2*181 

55*56 3*69036 10096 2*155 2*102 

43*51 3*68985 10115 2*132 2*080 

32*96 3*68903 10124 2*122 2*070 

22*59 3*68903 10137 2*104 2*053 

14*20 3*68864 10160 2*079 2*028 

8*24 3*68827 10178 2*060 2*010 

3*25 3*68819 10207 2*033 1*983 

1*42 3*68766 10226 2*018 1*969 

0*23 3*68736 10237 1*996 1*947 

In the last column the radial flow correction has been applied and the conductivity reduced to — 78*5°C. using 
a temperature coefficient of *007. 

(6) At Ice Point. Mean Temperature of Gas: 2*1°C. 

Pressure 
(Cm of Hg.). 

Current 
(1 amp). 

R - R0 
(Ohm). 

k' x 105 (2*1°C.) 
(Cal. cm-1 sec-1 deg-1). 

k' x 105 (0°C.) 
(Cal. cm-1 sec-1 deg-1). 

67*94 341229 •00010398 3*644 3*569 

26*92 340827 10395 3*618 3*544 

9*63 340725 10405 3*599 3*525 

2*35 340596 10417 3*575 3*501 

1*122 .. 340492 10419 3*567 3*494 

•854 .. 340387 10413 3*566 3*493 

•651 .. 340315 10410 3*564 3*491 

•394 .. 340233 10431 3*542 3*469 

•271 .. 340166 10451 3*504 3*432 

In the last column the radial flow correction has been applied and the conductivity reduced to 0°C. using a 
temperature coefficient of *005. 

(c) At Steam Point. Mean Temperature of Gas : 102*0°C. 

Pressure 
(Cm. of Hg.). 

Current 
(I amp). 

it - R « 
(Ohm). 

k' x 106 (102°C.) 
(Cal. cm-1 sec-1 deg-1). 

k x 105 (100°C.) 
(Cal. cm-1 sec-1 deg-1). 

73*41 2*98103 *00009051 5*705 5*604 

39*18 2*98058 9159 5*588 5*489 

21*50 2*98000 9170 5*565 5*467 

12*21 2*97949 9179 5*546 5*448 

4*23 2*97884 9198 5*511 5*414 

1*61 2*97829 9243 5*435 5*339 

In the last column the radial flow correction has been applied and the conductivity reduced to 100°C. using 
a temperature coefficient of *004. 

Discussion of Results 

These conductivity data for all three temperatures (on account of their 

gradual decrease with the pressure) are evidently affected by the existence 

of the temperature discontinuity effect. To allow for this effect the usual 

procedure is followed of plotting the reciprocal of k against the reciprocal 

of the pressure p. The plot of points so obtained is straight over a range 

of pressure in which convection is absent. To obtain the value of k 
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unaffected by the temperature discontinuity the straight portion of the 

graph is extrapolated to give the value of l./k corresponding to l/p = 0. 

In this way the following values of the thermal conductivity of carbon 

dioxide are obtained :— 

Temperature °C. —78*50°C. 0°C. 100°C. 

k x 105 
cal. cm-1 sec-1 deg-1 

1*97 3-50 5*4G 

There is also a second possibility that the observed variation of k with 

the pressure p is only in part the result of the temperature discontinuity. 

UbbelohdeT) has suggested that as the pressure of the gas is reduced 

the participation of the vibrational energy of the carbon dioxide molecules 

in the transport of heat becomes less and less complete, This also would 

result in a decrease in k with the pressure. 

Some recent measurements by us on monatomic argon gas show much 

less variation of k with p. It seems not unlikely that part of the decrease 

of k with p is concerned with the decrease in the transport of heat by the 

vibrational energy of the carbon dioxide molecules. 

Appendix 

Theory of the Method. 

The following approximate theory in which the how of heat from the 

wire through the ambient gas is assumed to be strictly radial leads to values 

of the thermal conductvity k' which are in error by a little less than 1 %. 

This can be shown to be the case by comparing the values of k as obtained 

from the approximate theory and from the exact theory which follows 

later. Accordingly, it is sufficient to use the approximate theory to work 

out the results and then to apply the small correction which allows for the 

departure from radial flow. 

Approximate Theory. 

Let a wire of length 21 and thermal conductivity A be mounted axially 

in a tube which is maintained at some constant temperature whch may be 

taken as an arbitrary zero. Let the annular space between the wire and 

the tube be filled with a gas of conductivity k. 

If the flow of heat from the wire is strictly radial then we have:— 

7T b2 A 
d*t 

dz2 
2 7T b h t 

I2 R0(l+at) 

21J 
0 (1) 

where R0 (1 + a t) is the resistance of the wire at t°, R0 is the resistance 

at the temperature of the bath in which the apparatus is immersed, and 

b is the radius of the wire. The first two terms of (1) multiplied by dz 

represent the net rate of inflow of heat into an element dz along the wire 
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and over its surface, while the last term multiplied by dz is the rate at 

which heat is produced electrically in the element of length dz. If the 

following substitutions be made:— 

2 2h _ I2R0 m 

^ S bA’ m # 2^1JA’ ^ - ma and v = t - -g, 

d2v 
(1) reduces to j~2 /32y = ^ 

For ft2 > O the solution of this equation is : — 

t — A sinh /Jz + B cosh 

where A and B are arbitrary constants. If the origin of z be placed at 

the middle of the wire the boundary conditions are t = O at z = d= 1 whence, 

after evaluating A and B, we obtain :— 

m f 1 cosh /3z ^ 

j8* \ cosh p\ ) 
(2) 

giving the distribution of temperature along the wire. 

For a sufficiently short and thick wire the distribution of temperature 

is very nearly parabolic, as can be seen by substituting the first two terms 

of the expansions for cosh /3z and cosh ft\. The parabolic distribution 

was assumed in the elementary theory previously given. 

The mean temperature t along the wire is given by 

•osh ftz 

or 

»I, £ * 

o- 

m 

Q2 

cosh fi\ 

tanh ft] ^ 

) 

dz 

(3) 

If R is the observed resistance of the wire at the mean temperature t 

then R = R0 (1 + a t), giving 

t = 
R - Be 

R0 a 

(In actual experiments t is 3 or 4 degrees only.) Accordingly, on 

substituting for t, (3) becomes : 

O2 ( 1 — 
tanh p\ 27rb2AJ(E-R0! 

R02I2al 
(•i) 

(4) may be written in the form: 

c £313 

R- Rn /31 — tanh 

where c = 
R02I2al 

277b2JA 

10896/45.—10 
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Expanding tanh /?1 as a power series we obtain: 

c /3313 

r-R0 ~ j81 - (/SI - |/3313 + 2/15 /35ls - 17/315 pV + ...) 

= 3 J (1 + 2/5 /3212) - g-J (nearly) 

For values of ^1 not greater than unity, the error introduced in the right- 

hand side of the last equation by neglecting the term /24l4/525 is small, 

e.g. for /?1 = 1 it is 1 in 300. If this term be neglected, we obtain, after 

simplification: 

2h R.I2a [ 5R0 1 5A 

bA 27r b2Jl [ 6(R-R0) J 212 (°] 

If A is known, (5) can be solved at once for h, and the conductivity k' 

of the gas obtained by multiplying h by the ‘ form factor ’ for radial flow 

between concentric cylinders, i.e.:— 

k' = h • b loge a/b. 

where a is the inner radius of the tube. 

The wires used in our experiments are not sufficiently short and thick 

for (5) to be applicable to the high conductivity gases, hydrogen, deuterium 

and helium. It is therefore necessary to solve the more general equation 

(4) for h. This is most conveniently done by tabulating the function;— 

f _ /_I\2 /i tanhJJK 

“ V j81 ) V ySl ) 

for different values of £1. 

When the tube contains a high vacuum (pressure not greater than 

10-5 mm. Hg.) the only lateral loss of heat from the wire is a very small 

one due to radiation, as" the loss due to molecular conduction in the residual 

gas as shown below is negligible. If hR be written for h in (5) this 

equation enables us to obtain the thermal conductivity A of the wire since 

hR may be obtained by calculation from radiation data. It is, however, 

more convenient for purposes of calculation to transform (5) into the 

equival ent f orm:— 

1 RR0I2 a 1 / 4 4_ I Rq12 tt 1 \ / , 

” 6 77b2J(R-R0) V 30 77b2 JA / V 

4 W2 

5 bA 

This relation replaces the simpler relation (6) of Knudsen, given in the 

elementary theory. The quantites in the last two brackets on the right 

hand side of (6) represent small corrections only. It is therefore sufficient 

to use the approximate value of A. given by Knudsen’s simple formula in 

evaluating them. The quantity hR can be readily obtained. The radiation 

per cm.2 per second from a metal surface is:— 

S = eaT4 

where cr is Stefan’s constant, T the absolute temperature, and e the 

emissive power of the metal surface. It follows that: 

hjt = 4 € a T3 
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The value of e for a given metal can be obtained from experimental curves 

representing e as a function of the wavelength. (The curves given in 

Geiger-Scheel, Handbuch der Physik, Vol. 21, p. 190, may be used.) The 

wavelength Amax corresponding to a given temperature T can be obtained 

from Wien’s Displacement Law:— 

A max T = *288 cm. deg. 

The validity of (6) depends also on the heat transfer by molecular 

conduction in the high vacuum being negligible. It can be readily shown 

from a relation obtained by Knudsen (for which see Lorentz “ Lectures 

on Theoretical Physics,” vol. 1, p. 144) that the loss of heat per cm.2 per 

sec. from a wire at t°C to a coaxial surrounding cylinder at the temperature 

of 0°C which contains air at a pressure of p dyne cm."2 is:— 

W < 3xl0"6p-t 

This gives to the part hc of h due to molecular conduction a value:— 

hc < 4 x 10-7 cal. cm."2 sec.-1 deg.-1 

when the pressure is 10~4 mm. of mercury. Even at this pressure the 

effect of ignoring molecular conduction in (6) results in an error in A 

of less than 1 part in 1000. 

Exact Theory. 

In the exact theory, for which we are indebted to Professor T. Cherry, 

the differential equation (1) must be replaced by the following differential 

equation holding at the surface of the wire :— 

+ ^ (1 + a t) = 0 (7) 

r=b J 

where p0 is the resistance of the wire per unit length. As before, the first 

two terms multiplied by dz represent the net rate of inflow of heat into 

the element dz along the wire and over its surface, while the last term 

multiplied by dz is the rate of generation of heat in dz by the electric 

current. 

l2 ft , 9 u ^ 
b2 —-T + 2 7T b k — 

dz2 ()r 

The solution of (7) is :— 

t = ^ cn p0 (nsr) / I„ (nsa) — K0 (nsr) / K0(nsa)J cos nsz 

where s = 7t/21, (n being odd) 

=Z cn ns Tlj (nsb) / I0 (nsa) — (nsb) / K0 (nsa) 1 cos nsz 

r=b L J 

= Z cn ns Nln cos nsz (say), 

= — Z cn (ns)2 fl0 (nsb) / I0 (nsa) - K0 (nsb) / K0 (nsa)] cos nsz 

r=b L 

= — Z cn (ns)2 N0n COS nsz (say), 

r~b = 27 cn Non cos nsz. 

and 
hz2 

and — 
br 

and t 
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)v Al$o, for 1 < z < 4“ 1 

I2p0/J = J^412p0/J77j £cos sz — ^ cos 3sz + 1/5 cos 5sz .J 

Hence, on substituting in (7) and equating coefficients of cos nsz we get: 

Cn = ± [2PR0/nj77l] 4- [At7b2 (ns)2 Non - Zirhk (ns) Nln - PR„aNoa/2Jl] 

(8) 

the sign l)eing + for n= 1, 5, 9.and — for n = 3, 7, 11 .... 

The resistance of the whole wire from z — -1 to z = —j— 1 is: 

® “ j l Po (1 “1“ a ~ ^Po^ “1“ a /it J £C1 Noi J c3 ^03 “f~ i C5 -^ 05 • • • jj 
or, since R0 = 2 p0 1 

tt(R — R0) / 2R0 a — l\ N01 — 4 c3 N03 4- ic5 N0R .... (9) 

where N0n=I0 (nsb) / I0 (nsa) —K0 (nsb) / K0 (nsa) 

The equations (8) and (9) together replace (4) of the approximate theory. 

h will be noticed that the thermal conductivity k of the gas occurs only in 

the co-efficients cn defined by (8). The series on the right hand side of * 

(9) converges very rapidly and the calculation of the first three terms 

allows k to be obtained by successive approximations. The expansions of 

the Bessel functions I0, and K0 are given in Whittaker and Watson, 

Modern Analysis, Chapter 17. 
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